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Abstract

Background: The diagnosis of autism spectrum disorder (ASD) at the earliest age possible is important for initiating
optimally effective intervention. In the United States the average age of diagnosis is 4 years. Identifying metabolic
biomarker signatures of ASD from blood samples offers an opportunity for development of diagnostic tests for detection of
ASD at an early age.

Objectives: To discover metabolic features present in plasma samples that can discriminate children with ASD from typically
developing (TD) children. The ultimate goal is to identify and develop blood-based ASD biomarkers that can be validated in
larger clinical trials and deployed to guide individualized therapy and treatment.

Methods: Blood plasma was obtained from children aged 4 to 6, 52 with ASD and 30 age-matched TD children. Samples
were analyzed using 5 mass spectrometry-based methods designed to orthogonally measure a broad range of metabolites.
Univariate, multivariate and machine learning methods were used to develop models to rank the importance of features
that could distinguish ASD from TD.

Results: A set of 179 statistically significant features resulting from univariate analysis were used for multivariate modeling.
Subsets of these features properly classified the ASD and TD samples in the 61-sample training set with average accuracies
of 84% and 86%, and with a maximum accuracy of 81% in an independent 21-sample validation set.

Conclusions: This analysis of blood plasma metabolites resulted in the discovery of biomarkers that may be valuable in the
diagnosis of young children with ASD. The results will form the basis for additional discovery and validation research for 1)
determining biomarkers to develop diagnostic tests to detect ASD earlier and improve patient outcomes, 2) gaining new
insight into the biochemical mechanisms of various subtypes of ASD 3) identifying biomolecular targets for new modes of
therapy, and 4) providing the basis for individualized treatment recommendations.

Citation: West PR, Amaral DG, Bais P, Smith AM, Egnash LA, et al. (2014) Metabolomics as a Tool for Discovery of Biomarkers of Autism Spectrum Disorder in the
Blood Plasma of Children. PLoS ONE 9(11): e112445. doi:10.1371/journal.pone.0112445

Editor: Subhabrata Sanyal, Biogen Idec, United States of America

Received June 2, 2014; Accepted October 6, 2014; Published November 7, 2014

Copyright: � 2014 West et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: Stemina funded this study. The funder provided support in the form of salaries for authors (PRW, LAE, AMS, MER, JAP, BRF, KRC, GGC, ELRD, and REB),
but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: All authors except Blythe Corbett have, within the past five years, received salary from, and/or hold stocks or stock options in, Stemina
Biomarker Discovery, which as a company may gain or lose financially from the publication of this manuscript. PRW, LAE, AMS, MER, JAP, BRF, KRC, GGC, ELRD and
REB are employees of Stemina, whose company funded this study and holds, or is currently, applying for patents relating to the content of the manuscript as
follows: BIOMARKERS OF AUTISM SPECTRUM DISORDER; PCT App No. PCT/US2014/045397 and METABOLIC BIOMARKERS OF AUTISM; PCT Application No. PCT/
US2011/034654. There are no further patents, products in development, or marketed products to declare. This does not alter the authors’ adherence to all the
PLOS ONE policies on sharing data and materials.

* Email: pwest@stemina.com

¤ Current address: Pfizer Inc., São Paulo, Brazil

Introduction

Autism spectrum disorder (ASD) is a lifelong neurodevelop-

mental disorder characterized by social deficits, impaired verbal

and nonverbal communication and repetitive movements or

circumscribed interests [1]. About 1 in 68 children has been

identified with autism spectrum disorder (ASD) according to

estimates from CDC’s Autism and Developmental Disabilities

Monitoring (ADDM) Network. The current process for a clinical
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diagnosis includes establishing a developmental history and

assessments of speech, language, intellectual abilities, and educa-

tional or vocational attainment. In practice, these methods lead to

a diagnosis at an average age of 4 years [2] in the United States. It

is recognized that establishing personalized therapy for children

with ASD at the earliest age possible improves outcomes including

a higher level of cognitive and social function and improved

communication as well as decreased financial and emotional

burden on families [3,4]. Development of blood-based diagnostic

tests to aid in the assessment of risk for a diagnosis of ASD at an

early age would facilitate implementing intensive behavioral

therapy at the earliest age possible.

The etiology of the vast majority of cases of ASD are unknown

and their genetics have proven to be incredibly complex [5,6].

There is now widespread appreciation that there will be many

causes of ASD with varying combinations of genetic and

environmental risk factors at play. Numerous studies have

attempted to identify the causes of the disorder by studying

transcriptomics and genomics, leading to the identification of

multiple genes associated with ASD [6,7]. There are currently

hundreds of observable genetic variants that account for about

20% of the cases of autism. These data are currently most useful in

understanding the intra-familial genetics of autism. For this

reason, clinical tests based on genomic measures often include

genetic counseling to assess the chance of disease occurrence or

recurrence within a family [8,9]. Prediction accuracies of ASD risk

based on genomic approaches range from 56% to 70% depending

largely on the population of patients assessed. Separate analyses of

at least one of the genomic studies by Skafidas et al. has questioned

whether the results have been confounded by biases due to

ancestral origins [10,11]. An additional limitation of genomic

studies is that the results of environmental influences on the child

and/or mother are not discernible. Metabolomics is sensitive to

biochemical changes caused by even subtle environmental

influences and therefore can complement genomic approaches

by addressing some of these factors that may be closer to

phenotype.

Given the complexities of the genetic environment of ASD,

metabolomic profiling may provide an alternative path to

developing early diagnostic tests. Previous metabolic studies of

ASD have used biological matrices such as cells, organelles, urine

and blood, and have implicated a wide range of metabolites

including fatty acids, sterols, intermediary metabolites, phospho-

lipids, and molecules associated with oxidative stress [12–16]. Two

recent reports highlight the potential use of metabolomic analysis

of urine to identify signatures of ASD. One study used 1H-NMR

methods and showed changes in metabolites associated with the

tryptophan/nicotinic acid metabolic pathway, sulphur and amino

acid pathways, as well as microbial metabolites implicating the

involvement of microbial metabolism in the etiology of ASD [16].

Ming et al. used a combination of liquid- and gas-chromatography

based mass spectrometry methods to identify changes in a number

of amino acids and antioxidants such as carnosine, as well as

confirming the changes associated with altered gut microbiomes

[17].

Measurement of metabolites offers an excellent opportunity to

identify differences in small molecule abundance that may have

the ability to characterize some forms of ASD. High resolution

mass spectrometry (HRMS) is not only a very sensitive detection

method for small molecule metabolites, it also provides accurate

mass data that aids in metabolite identification through molecular

formulae determination [18]. HRMS offers an additional distinct

advantage in the ability to distinguish between compounds with

the same nominal mass (isobaric compounds), providing enhanced

chemical formula and structure information [19]. Unfortunately

there is not one universal chromatographic mass spectrometric

technique capable of detecting all of the metabolites in blood. To

identify novel potential biomarkers associated with ASD, it is

necessary to facilitate broad metabolite detection coverage.

Toward this goal, we applied an orthogonal approach to

chromatographic separation, mass spectral ionization and detec-

tion [20]. The current study employed multiple chromatographic

mass spectrometric metabolomic methods including gas chroma-

tography-mass spectrometry (GC-MS) and liquid chromatogra-

phy-high resolution mass spectrometry (LC-HRMS) to discover a

wide range of metabolites in blood plasma samples that were able

to differentiate TD individuals from those with ASD. Subsequent-

ly, tandem mass spectrometry (MS-MS) experiments were

employed to aid in structural confirmation of the metabolites

discovered by LC-HRMS.

The aim of the study was to perform a broad evaluation of small

molecules in blood plasma to discover metabolites that may lead to

biomarkers associated with ASD. Univariate, multivariate and

machine learning methods were employed to discover metabolites

or groups of metabolites exhibiting statistically significant abun-

dance differences that can be used as biomarkers to distinguish

children with ASD from TD individuals.

Materials and Methods

Subject Samples
The experimental subjects were initially recruited through the

UC Davis M.I.N.D. Institute Clinic, Regional Centers, referrals

from clinicians, area school districts and community support

groups such as Families for Early Autism Treatment (FEAT).

Subjects were limited to an age range of 4–6 years. Typically

developing participants were recruited from area school districts

and community centers. All facets of this study were approved by

the University of California at Davis Institutional Review Board

(IRB). Written informed consent was obtained from the parent or

guardian of each participant and data were analyzed without

personal information identifiers then subjects completed diagnostic

and psychological measures. Study participants with ASD were

enrolled under inclusion criteria consisting of a diagnosis of autism

spectrum disorder based on the DSM-IV criteria determined by

an experienced neuropsychologist (BAC), which was further

corroborated by the following measures using research reliable

clinicians: the Autism Diagnostic Observation Schedule-Generic

(ADOS-G) provides observation of a child’s communication,

reciprocal social interaction, and stereotyped behavior including

an algorithm with cutoffs for autism and autism spectrum disorder;

the Autism Diagnostic Interview-Revised (ADI-R) is a compre-

hensive, semi-structured parent interview that assesses a child’s

developmental history and relevant ASD characteristic behaviors

and generates a diagnostic algorithm for children with ASD. Based

on the DSM-IV criteria [21], only children with strictly defined

autistic disorder were enrolled whereas children with pervasive

developmental disorder-not otherwise specified (PDD-NOS) or

Asperger Syndrome were excluded from the study. The Social

Communication Questionnaire (SCQ) was used as a screening tool

to ensure the absence of symptoms of ASD in the TD children.

The patients recruited for this study were primarily Caucasian and

the ages were similar between groups. However, the participants

with autism had lower IQ scores than the TD subjects [22,23].

The exclusion criteria for all subjects included the presence of

Fragile X or other serious neurological (e.g., seizures), psychiatric

(e.g., bipolar disorder) or known medical conditions such as

autoimmune disease and inflammatory bowel diseases/celiac
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disease. All subjects were screened via parental interview for

current and past physical illness. Children with known endocrine,

cardiovascular, pulmonary, and liver or kidney disease were

excluded from enrollment in the study. Dietary restriction for

participation in the study was not required with the exception of

an overnight fast. Participation in the study required two clinical

visits for behavioral assessment and blood draws. After application

of exclusion criteria, the final study group consisted of 104

children, 69 with ASD and 35 in the TD group.

Samples were collected on Thursday morning visits to the

M.I.N.D. Institute over a period of 13 months. Blood was drawn

into a 9.6 mL EDTA Vaccutainer tube by an experienced

pediatric phlebotomist between the hours of 8 and 10 AM

following an overnight fast. Tubes were immediately inverted 6–8

times to assure mixing with the anticoagulant and placed on ice.

Immediately after plasma separation and aliquoting, samples were

sent on the morning of the draw via courier with a barcode label,

wrapped tube cap with a strip of parafilm; bubble wrapped then

set in a biohazard bag which was placed inside a carrier between

coolant packs. Samples were stored at 280uC.

Samples from 103 of the 104 children were sent to Stemina for

metabolomic analyses on dry ice… Upon receipt, 5 samples were

removed after visual inspection and observation of overt hemolysis

and the remaining 98 samples were analyzed by mass spectrom-

etry. Quality checks of the raw mass spectrometric data from the

98 samples were performed, resulting in removing data from 16

patient samples that did not contain MS data from all 5 methods

from further analysis. The final 82 samples used in these studies

originated from 52 children with ASD and 30 children in the TD

group. The children were chosen so that the age and gender

distributions were similar across the groups. There was no

statistical difference in age between ASD cases and the TD

children for the current study (Welch’s t-test p = 0.25) (see

Table 1).

Regarding patient medication, 18 out of 52 of the subjects with

ASD in this study were taking medications which included

Risperidone (5), Sertraline (3), Aripiprazole (2), antihistamines (2),

antivirals (2), antifungals (2), and various other less frequent drugs.

Three of the 30 typical subjects were taking medications, which

included methylphenidate (1), albuterol (1) and loratadine (1). Ten

of the 52 ASD subjects were on a gluten and/or casein-free

(GFCF) diet. Importantly, blood draws were administered prior to

eating and any morning administration of any medication.

Sample Preparation for LC-MS
Plasma samples were split into 50 ml aliquots and stored at

280uC prior to metabolite extraction. Samples were kept on ice

during these procedures. Samples were randomized into three

batches for the LC-HRMS analysis such that diagnosis, IQ, age

and ethnicity were equally distributed in each batch. Small

molecules were extracted from 50 mL plasma aliquots using

450 mL of 8:1 methanol: water solution at 220uC [24]. The

extraction solution also contained internal standards. The samples

were agitated for 10 minutes at 2–8uC then centrifuged at

18,4006G for 20 minutes at 4uC to remove the precipitate. The

supernatant was transferred to a fresh tube and the centrifugation

step was repeated to remove any residual precipitate. After the

final centrifugation, 450 mL of supernatant was transferred to a

fresh tube then evaporated to dryness in a SpeedVac, then

resolublized in 45 mL of a 50:50 mixture of 0.1% formic acid in

acetonitrile: 0.1% formic acid, also containing internal standards.

This solution was then transferred to a high performance liquid

chromatograph (HPLC) autosampler injection vial for LC-HRMS

analysis.

Mass Spectrometry
Both targeted GC-MS as well as untargeted LC-HRMS were

employed for better metabolome coverage. Four untargeted LC-

HRMS methods were used including C8 or HILIC chromatog-

raphy coupled to electrospray ionization in both positive and

negative ion polarities, resulting in 4 separate data acquisitions per

sample. For each methodology and condition, only a single sample

aliquot was assessed, due to limited material availability.. LC-

HRMS methods were developed and tested prior to the evaluation

of the clinical patient samples to optimize the breadth of coverage

of small molecule metabolites.

Liquid Chromatography High Resolution Mass
Spectrometry

LC-HRMS was performed using an Agilent G6540 Quadrupole

Time of Flight (QTOF) system consisting of an Agilent 1290

HPLC coupled to a high resolution (QTOF) mass spectrometer.

Electrospray ionization (ESI) in both positive and negative ion

modes was employed using a dual ESI source under high-

resolution exact mass conditions. 2 mL of sample was injected. A

Waters Acquity ultra high performance liquid chromatography

(UPLC) BEH Amide column with dimensions 2.16150 mm,

1.7 mM particle size was used for Hydrophilic Interaction Liquid

Chromatography (HILIC), and maintained at 40uC. Data was

acquired for each sample for 29 minutes at a flow rate of 0.5 mL/

minute using a solvent gradient with 0.1% formic acid in water

and 0.1% formic acid in acetonitrile. An Agilent Zorbax Eclipse

Plus C8 2.16100 mm, 1.8 mM particle size column was used for

C8 chromatography and data was acquired for each sample for

Table 1. Patient demographic information.

Demographic TD ASD Overall

Group Size 30 52 82

Sex (male %) 86.67 78.85 81.7

Range 4.17–6.92 4–6.92 4–6.92

Age (Years) Average 5.6 5.37 5.46

Std. Dev. 0.95 0.81 0.87

Range 88–137 40–110 40–137

IQ Average 114.3 67.48 80

Std. Dev. 10.78 17.69 27.47

doi:10.1371/journal.pone.0112445.t001
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50 minutes at a flow rate of 0.5 mL/minute using a gradient with

0.1% formic acid in water and 0.1% formic acid in acetonitrile

and maintained at 40uC.

Gas Chromatography - Mass Spectrometry
GC-MS analyses were performed at the West Coast Metabo-

lomics Center at UC Davis as described in [25]. GC-MS data was

acquired using an Agilent 6890 gas chromatograph coupled to a

LECO Pegasus IV TOF mass spectrometer. Metabolite identifi-

cation was done by comparing sample data to a database of over

1,000 compounds identified by GC-MS that includes mass spectra,

retention indices, structures and links to external metabolic

databases.

Metabolite chemical structure confirmation by
LC-HRMS-MS

The chemical structures of key metabolites were further

confirmed using tandem mass spectrometry (LC-HRMS-MS)

methods with chromatographic conditions identical to those used

for their discovery. LC-HRMS-MS analyses were performed on

an Agilent QTOF mass spectrometer for patient samples and/or,

reference blood samples with collision energy conditions optimized

to obtain the highest quality product ion spectra. The resulting

product ion spectra were then compared to MS-MS spectra

available in public spectral databases such as METLIN [26],

MassBank [27] and Stemina’s own SteminaMetDB database.

Data Analysis
LC-HRMS Data preprocessing. Raw mass spectral data

and were initially examined for quality criteria established during

method development such as abundance thresholds, retention

time and peak shape consistency for total ion chromatograms, and

extracted ion chromatograms for internal standards and markers.

Data files exhibiting chromatograms that failed these quality

criteria were removed from further analysis. A portion of these

were retested, depending on the nature of the QC failure. Raw

data were converted to open source mzData files [28]. Peak

picking and feature creation were performed using XCMS [29]

and then deviations in retention times were corrected using the

obiwarp algorithm [30] based on a non-linear clustering approach

to align the LC-HRMS data. Mass features were generated using

the XCMS density based grouping algorithm. Missing features

were integrated based on retention time and mass range of a

feature bin using iterative peak filling. A ‘‘mass feature’’ (also

abbreviated here as ‘‘feature’’) is a moiety detected by the mass

spectrometer that is defined by 2 properties 1) the detected mass-

to-charge ratio (m/z) and 2) the chromatographic retention time.

A series of data filters were then employed to remove features

exhibiting low abundance levels, those resulting from background

noise, ions with non-biological mass defects, and known contam-

inants from subsequent data analyses. To reduce LC-HRMS

batch variations in feature detection, the abundance values were

then normalized by sample to the experiment-wide median area of

spiked-in internal reference standards. The integrated areas of the

normalized mass features from the GC-MS and LC-HRMS

platforms were combined into a single dataset. There were 4572

features for the training set of samples that passed preprocessing

filters.

Training and Independent Validation Sets. The 82

patient samples (52 ASD and 30 TD samples) were split into

two sets, (1) a training set of 61 samples (39 ASD and 22 TD) for

identification of statistically significant features and classification

modeling and (2) a 21-sample independent validation set (13 ASD

and 8 TD) used to evaluate performance of the classification

models. This was accomplished by randomizing the samples using

the diagnosis, patient IQ, and gender in these training and

validations sets so that each set contained a similar proportion of

factors used in randomization. The validation sample set was

withheld from the univariate filtering and model development

process to act as an independent external sample set to evaluate

model performance. Detailed patient demographics for the

samples in the training and validation sets are provided in Table

S4.

Univariate Filtering of Mass Features. T-tests were used

to reduce the overall feature set, the potential for over-fitting, and

increase the biological interpretability of the predictive signature

[31]. The integrated areas of mass features normalized to internal

standards (IS) from the GC-MS and LC-HRMS platforms were

combined into a single dataset. The 4572 features passing the

preprocessing filters for the training set of samples were further

filtered using Welch T-tests under the null hypothesis that no

difference in mean integrated areas of a mass feature is present

between the experimental classes, and the alternative hypothesis

that there is a difference in mean integrated areas between ASD

and TD training set samples to identify differential features. For

each feature that exhibited a statistically significant change with an

uncorrected p-value ,0.05, its extracted ion chromatogram (EIC)

was reviewed for consistency of integration across samples, peak

shape, and a minimum peak height requirement of .3000.

Features passing this EIC quality review process were then utilized

in the classification modeling. False discovery rates (FDRs) were

calculated using the Benjamini Hochberg method of p-value

correction [32].

Classification Modeling. Model development was per-

formed with two primary goals: 1) to robustly rank the importance

of metabolites in discriminating ASD using a VIP (Variable

Importance in the Projection) score index and 2) to identify the

minimum set of predictive metabolites needed to reach the highest

levels of differentiation of the ASD and TD experimental classes.

The final models were created by training a Partial Least Squares

Discriminant Analysis (PLS-DA) or Support Vector Machine

(SVM) classifier using the entire 61-sample training set. The

modeling techniques PLS-DA as well as SVM with a linear kernel

[33,34] were both utilized to demonstrate that the molecular

signature can be predictive using multiple approaches. PLS and

SVM classification models were created using the R package

Classification and Regression Training ‘‘caret’’ version 5.17–7

[35]. Receiver operator Curve (ROC) analysis was performed

using the R package ROCR version 1.0–5 [36].

A nested cross validation (CV) approach (Figure 1) was used to

meet the first objective of model development - a robust measure

of feature VIP scores. The 179 features from the 61 sample

training set were analyzed using 100 resamples with an 80:20 split

to weight the importance of each of the 179 statistically significant

features. The tuning loop utilized 10-fold cross validation to tune

model parameters (cost parameter C for SVM and the number of

components for PLS-DA). The recursive feature elimination loop

was used to identify the best performing feature subset from each

iteration using steps of 20 features. The results from the 100

resamples were used to estimate model performance and create a

robust biomarker VIP score index to rank the importance of each

of the 179 features in classification of ASD from TD individuals.

Feature VIP robustness was measured by resampling the

training set 100 times using an 80:20 split into 49-sample CV

training and 12-sample CV test sets. VIP scores were calculated

for each of the 100 resamples and the most informative features at

each resample were identified by backwards recursive feature
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elimination (in 20-feature steps) using the Area Under the ROC

Curve (AUC). The most informative set of features was then used

to predict each CV test set. The VIP scores were averaged across

the 100 resamples to create the VIP index for each feature. The

classification performance metrics of the CV test sets were

averaged across resamples to understand potential future perfor-

mance.

The second objective of the classification modeling approach

was to identify the minimum number of features with the highest

level of classification accuracy. This objective was met using

feature subsets based on the ordered VIP score index and

evaluating the subset performance in the validation set of samples.

The classification models were created using the entire 61 sample

training set and by stepping through features. The feature stepping

process utilized the 20 top VIP features then added the next 20

highest weighted features until all 179 features were evaluated.

Performance metrics (Accuracy, Sensitivity, Specificity, and

ROC analysis) were determined based on the prediction of the 21

sample independent validation set for assessment of the molecular

signature at each feature subset bin size (Table S3). Accuracy is

defined as the proportion of correctly classified participants and is

calculated by dividing the number of correctly classified partici-

pants by the total number of participants in a sample set.

Specificity is the proportion of correctly classified TD individuals

out of all TD participants in a sample set. Sensitivity is the

proportion of correctly classified ASD individuals out of all

participants with ASD in a sample set. The top 179 features were

also compared for rank between SVM and PLS modeling methods

(Figure 2).

Feature Metabolite Annotations. Metabolite annotation

(assignment of putative chemical structures) was carried out for

each feature. Annotation was accomplished by comparing m/z
value of each mass feature to the m/z value of common ESI

adducts contained in public chemical databases and/or Stemina’s

internal metabolite database. All mass features that were

annotated with chemical identities in that the measured exact

mass was consistent (within 20 ppm relative mass error) with one

or more chemical structures. These annotations were considered

to be putative until the chemical structure of the feature was

further confirmed by LC-HRMS-MS.

The molecular formulae of the mass features with putative

annotations were then input into the ‘‘Find by Formula’’ (FBF)

algorithm in the Agilent Technologies MassHunter Qualitative

Analysis software which tests whether the mass spectra for a given

feature is a reasonable match with the proposed formula. In most

cases, the annotations for any feature with a median FBF score of

less than 70, a retention time difference greater than 35 seconds or

which was present in less than 50% of the data files was not

included for further analysis due to lack of confidence in the

formula assignment of the annotation.

Features from the GC-MS analysis were identified as described

by [25]. This procedure used comparison of the sample data to

spectra of metabolite reference standards that had been previously

acquired by the same identical GC-MS method. Therefore, the

data analysis and confirmation of the metabolite chemical

structures was performed by a simple comparison of the acquired

patient sample data to the database. GC-MS data also contained

peaks that remained unidentified and showed statistically signif-

icant changes depending on sample class.

Results

The use of multiple orthogonal analytical methods provided a

broad coverage of the metabolome and each method contributed

mass features to the model for classification of the children with

ASD from the TD controls. Each analytical method was assessed

for the unique features it provided. The HILIC LC-HRMS

method resulted in the highest number of distinctive mass features

in the models, followed by C8 LC-HRMS then GC-MS.

Univariate analysis filtering was performed on the 4572 features

that passed the preprocessing filters. About 60% of the LC-HRMS

features were putatively annotated with a chemical structure and

Figure 1. Classification modeling process. A three-layer nested cross-validation approach was applied using both PLS-DA and SVM modeling
methods to determine significant features capable of classifying children with ASD from TD children. The 179 features of the training set were
analyzed using a leave-one-group-out cross-validation loop as described. The results from this cross-validation process were used to estimate model
performance and create a robust feature VIP score index to rank the ASD vs TD classification importance of each of the 179 features. These feature
ranks were used to evaluate the performance of the molecular signature using an independent validation set.
doi:10.1371/journal.pone.0112445.g001
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8% (503) of the annotated features passed the FBF procedural

criteria. Approximately 36% (142) of the targeted GC-MS features

were confirmed metabolites. A breakdown of these results is

contained in Table 2.

Data across the 61-sample training set from all analytical

platforms were used to identify and robustly rank the features that

could be utilized to discriminate plasma samples from children

with ASD from samples from TD children. The univariate analysis

filtering, as described in the methods, resulted in 389 statistically

significant features. Following feature QC, 210 features were

removed from the analysis due to poor quality EICs, leaving 179

features that were included in classification modeling. The 179

features comprised 3% of the LC-HRMS and 8% of the GC-MS

preprocessed set of features and are shown in Table S1.

Training Set Model Performance
SVM and PLS classification methods were used to discriminate

between samples from children with ASD and TD children using

the 179 selected features as variables and each feature’s

contribution toward classification was evaluated for future

biomarker development efforts. Based on the best performing

model from each of the 100 nested CV resampling iterations,

ROC plots were generated for the average of the 100 resamples to

understand performance of each modeling method (SVM and

PLS-DA). Both SVM and PLS modeling methods indicated that a

metabolic signature could be detected that could classify children

with ASD from TD individuals (Table S2). For the 61-sample

training set, the average ASD prediction accuracy of the SVM

model was 0.86, with AUC values of 0.95 (95% CI 0.94–0.96).

The PLS model gave an average prediction accuracy of 0.84 with

AUC values of 0.92 (95% CI 0.91–0.94). To confirm that the

model classification accuracies were not random results, the

modeling process was repeated with random permutations of the

diagnosis class labels. These results showed near random

classification, with AUC values of 0.52 (95% CI 0.48–0.57) and

0.52 (95% CI 0.49–0.56) for SVM and PLS, respectively,

indicating that the 179 features did not discriminate the classes

by chance (Figure 3).

Anticipating that blood tests for ASD may be more efficient and

less expensive if they measure an optimally lower number of

metabolites, the classification modeling paradigm also included a

feature number optimization in each model, based on the highest

resulting AUC. The feature sets were evaluated using feature

subsets based on the ordered VIP scores of individual features to

identify the minimum number of features that maximized

performance for each modeling method (Table S2). These data

together indicate that not all of the features contributed equally to

the models and that the number of features could be reduced by

removing those that contributed less while still retaining model

accuracy and robustness. As a result, the entire set of 179 features

was not required for optimal model performance for either of the

modeling methods (Figure 3). The results from the model training

process indicated that SVM models that were trained using an 80

feature set exhibited the best combined classification performance

metrics (when compared to PLS and other SVM results) with an

average accuracy of 90%, an average sensitivity of 92%, an

average specificity of 87%, and an average AUC of 0.95 (Table

S2).

Validation Set Model Performance
Different subsets of features, created based on the weighted VIP

scores, were evaluated independently of the outer cross-validation

loop using the 21-sample independent validation set. The 80-

feature SVM model described above had a classification predic-

Figure 2. Feature Importance Rankings. The top 179 features were compared for rank between SVM and PLS modeling methods. The lowest
rank scores represent the most important features.
doi:10.1371/journal.pone.0112445.g002
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Table 2. A breakdown of the numbers of features resulting from filtering and annotation processes, based on molecular formula.

Platform Raw Features Annotated Features
Unique Formula
within a Platform

Features Passing
Preprocessing Filters

Features Passing
Univariate Filter

HILIC + 3207 1985 146 1527 40

HILIC2 1865 1061 140 950 35

C8+ 3062 1902 140 1096 42

C82 1568 847 77 514 23

GC-MS 485 178* 142* 485 39

Total 10187 5795 645 4572 179

This table also helps to illustrate the orthogonality and contribution of each of the 5 analytical platforms. Molecular formulae are being used here only to approximate
the method orthogonality, since any given molecular formula may be associated with multiple chemical structures. *These annotations were confirmed in the GCMS
platform and the formula were confirmed by using the KEGG database instead of the FBF procedure used in the 4 LCMS platforms.
doi:10.1371/journal.pone.0112445.t002

Figure 3. Performance of the SVM and PLS models. Average AUC and accuracy of the (a) SVM and (b) PLS models containing different numbers
of features. The bar graphs show the number of optimal models which were derived from recursive feature elimination process that was included in
the resampling process for the indicated number of features.
doi:10.1371/journal.pone.0112445.g003
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tion accuracy of 81%, a sensitivity of 85%, a specificity of 75% and

an AUC of 84% (Figure 4, red line; Table 3). The best performing

PLS model, comprised of 160 variables, had an accuracy of 81%,

a sensitivity of 92%, a specificity of 63% and an AUC of 0.81%

(Figure 4, blue line; Table 3). Detailed results are shown in Table

S3. The results suggest that at least 40 features are needed to reach

an accuracy of 70% and that a range of 80 to 160 features had the

best performance with this independent validation sample set as

well as the training set of samples.

Confirmation of Metabolite Chemical Structures
The chemical identities of the 7 LC-MS mass features that were

confirmed by LC-HRMS-MS are shown in Table 4. Included in

the metabolites confirmed by LC-HRMS-MS or targeted GC-MS

was homocitrulline, which was decreased in ASD patients. Other

metabolites showing significant up or down regulation in our study

include: aspartate, glutamate, DHEAS, citric acid, succinic acid,

methylhexa-, tetra- and hepta-decanoic acids, isoleucine, glutaric

acid, 3-aminoisobutyric acid and creatinine. These are listed in

Table 4 and represent a variety of molecular classes including

amino acids, organic acids, sterols, and fatty acids.

Discussion

Our metabolomic approach was not biased toward possible

biochemical pathways other than by the separation and detection

limits of the analytical methods used. We used robust VIP scores

and recursive feature elimination to estimate that between 80 and

160 mass features are required to produce an optimal predictive

signature in this set of patients. The predictive signatures in this

study are the result of modeling a 62-patient training set, then

applying those models to predict a 21-patient validation set. This

approach has resulted in the discovery of a biochemically diverse

set of metabolites that might be useful in distinguishing individuals

at risk for ASD. It is difficult to determine how generalizable these

predictive signatures will be in the broader population, given the

small sample size. Larger studies need to be performed in order to

assess and refine a signature into a clinical diagnostic. Several of

the metabolites identified so far in these signatures point to

biological mechanisms that have been previously identified as

having a role in the etiology of ASD. Our signatures will most

likely represent a portion of the metabolic changes that will be

critical in the diagnosis of ASD through metabolic end points.

Identification of metabolites previously associated with
ASD

Examples of metabolites showing significant up or down

regulation in the current study that have been previously

associated with autism include:

N Tricarboxylic acid cycle associated molecules including citric

acid (decreased) and succinic acid (increased) were found to be

significantly altered in the ASD participants. Elevations in

urinary succinate [16,17] and decreased urinary citrate [37] in

children with autism have been previously reported.

N Fatty acids have previously been observed to be decreased in

the plasma of children with ASD, similar to our observations

for methylhexa-, tetra- and hepta-decanoic acids [12]. Links

between saturated fatty acid metabolism and oxidative stress

have been reported in erythrocytes in children with ASD [38].

N 3-aminoisobutyric acid was increased in samples from

participants with ASD. This is also consistent with previous

findings [39].

N Creatinine was decreased in children with ASD and is

consistent with the findings of Whitely et al, who observed

similar changes in urinary creatinine in children diagnosed

with PDD [40].

Evidence for a role in mitochondrial dysfunction in ASD
The goal of this study was to evaluate biomarkers in blood.

When metabolism is disrupted, active transporters and tissue

specific differences in metabolism can cause different levels of the

same metabolites in different biological compartments (plasma,

urine, CSF, etc.). When discussing individual metabolites in the

context of autism, it is important to recognize that autism is a

systemic disease that affects other organ systems besides the brain.

For example, serotonin levels have been reported to be elevated in

blood in some patients with autism, and other evidence suggests

that intracerebral serotonergic activity is decreased in ASD.

Serotonin does not cross the blood brain barrier, and the brain has

different enzymes for serotonin synthesis than peripheral tissues

[41].

Many of the confirmed metabolites that are associated with

ASD are relevant to aspects of mitochondrial biology. Mitochon-

drial disease or dysfunction may be a risk factor for autism [42]. In

addition, several other observed metabolites are associated with

other processes already proposed to be involved in ASD including

oxidative stress [43] and energy production [44].

N Aspartate and glutamate levels in blood were significantly

elevated in ASD, as has been observed in previous studies

[45,46]. Mutations in the aspartate/glutamate mitochondrial

transporter, SLC25A12, have been previously associated with

ASD [47]. This transporter is an important component of the

malate/aspartate shuttle, a crucial system supporting oxidative

Figure 4. ROC curve performance of the classification models
from the training and validation sets. The average of 100 iterations
of the classifier for the best performing feature sets following recursive
feature elimination comparing ASD vs. TD samples (Black and Grey
Lines). The blue (PLS) and red (SVM) lines are ROC curves of the best
performing validation feature subsets. Vertical bars represent the
standard error of the mean.
doi:10.1371/journal.pone.0112445.g004
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phosphorylation, adenosine triphosphate production, and key

metabolites for the urea cycle [47].

N DHEAS, the predominant plasma sterol, was increased in

children with ASD. DHEA is known to affect mitochondrial

energy production through inhibition of enzymes associated

with the respiratory chain [48] with variable findings in

children with ASD [49,50].

N The branched chain amino acid isoleucine was reduced in

samples from children with ASD versus TD children as

observed by others [51]. Possible molecular mechanisms would

include mutation in the branched chain amino acid kinase

dehydrogenase (BCKD-kinase), a mitochondrial enzyme [52]

as well as amino acids in energy metabolism [53].

N Glutaric acid levels were elevated in children with ASD.

Increased urinary glutaric acid occurs in a variety of neuronal

deficiencies such as glutaryl-CoA dehydrogenase (GCDH)

deficiency. A significant portion of the glutaric acid metabo-

lism takes place in the mitochondria [54].

The potential relationship of the gut microbiome with
ASD

This potential connection between the gut microbiome and

ASD is also receiving considerable attention [55]. Metabolomic

studies of urine from individuals with ASD have identified

molecules associated with the microbiome such as dimethylamine,

hippuric acid and phenylacetylglutamine [16,17]. We observed

decreased plasma levels of p-hydroxyphenyllactate, a metabolite

associated with bifidobacteria and lactobacilli that is known to

serve as an antioxidant both in the circulation and tissues [56]. We

have yet to identify other microbiome related metabolites.

Novel metabolic alterations in ASD
We identified novel statistically significant changes in some

metabolites that had not been previously reported in other

metabolomics profiling as well as identifying novel changes in

metabolites that had never before been associated with ASD.

Significant changes in the levels of aspartate, citrate, creatinine,

DHEA-S, hydroxyphenyllactate, indoleacetate, isoleucine, gluta-

mate and glutarate between ASD and TD individuals were

identified in this study compared to previous metabolomics studies

of urine metabolites where changes in these metabolites were not

significant [17]. These differences could be related to transport

and accumulation of metabolites in the urine compared to the

blood, differences in the study populations, or application different

LC-MS and GC-MS methodology allowing better detection of

these metabolites in this study.

We also identified a new, previously undescribed potential ASD

biomarker, homocitrulline. This metabolite was decreased in ASD

patients and had the highest rank of all features in both SVM and

PLS classification models. Homocitrulline is a poorly understood

molecule which is known to be formed inside the mitochondria

from lysine and carbamoyl phosphate. The decreased homocitrul-

line levels in the blood suggests that homocitrulline metabolism in

the brain may also be disrupted, Homocitrulline levels are

increased in urine and blood in patients with ornithine translocase

(SLC25A15) deficiency which diverts carbamyl phosphate to react

with lysine. These patients can exhibit behavioral abnormalities

similar to ASD such as developmental delay, ataxia, spasticity,

learning disabilities, cognitive deficits and/or unexplained seizures

[57]. Rats treated with intracerebroventricular administration of

homocitrulline are also observed to have disrupted brain redox

status and energy metabolism [58,59]. These observations suggest

that elevated brain levels of homocitrulline are deleterious;

however additional studies are needed to define the brain levels

of homocitrulline and the potential role in the development of

ASD.

Summary

The current study profiled metabolites in blood plasma using

metabolomics methods to evaluate the possibility that differences

in the metabolite abundances might provide a metabolic signature

that could prove useful in distinguishing individuals at high risk for

developing ASD. The cohort of subjects enrolled in this study was

carefully assembled to reflect a diagnosis of ASD by strict research

criteria. Beyond careful clinical diagnosis, great pains were taken

to ensure that fasting blood collection was obtained at the same

time for all study participants and that complicating factors such as

illness were minimized. We consider the current work as a proof of

concept that there are predictive metabolic signatures which can

be used to distinguish ASD and TD individuals.

Two independent statistical classification methods (PLS and

SVM) were employed to determine the most influential metabo-

lites and mass features that could be used to discriminate between

ASD and TD individuals. Both classification modeling methods

yielded relatively similar results with respect to maximum

prediction accuracy of about 81% as evaluated by an independent

21-sample validation sample set. This was followed by recursive

feature elimination to establish the minimal numbers of features

needed for a predictive model. Interestingly, several of the key

features for classification, such as homocitrulline, were common

between the two methods indicating their importance in the

development of future blood based diagnostics. It is clear that

access to a larger sample set will be required to further validate

and confirm the annotations of the key features. Metabolomics

determines changes in small molecule metabolites that are

reactants and products of endogenous biochemical processes as

well as small molecules derived from diet, the gut microbiome and

contact with the environment. Perturbations in their abundance

can result not only from genomic and proteomic influences, but

from environmental and epigenetic influences as well. A

metabolomic approach may therefore provide enhanced predic-

tive results by keying in on common, end stage metabolites rather

than on specific genomic or proteomic determinants.

Table 3. Classifier performance metrics based on predictions on the independent 21-sample validation set, showing the feature
sets with the highest accuracy.

Model Feature No. Accuracy Sensitivity Specificity AUC

SVM 80 0.81 0.85 0.75 0.84

PLS 160 0.81 0.92 0.63 0.81

Feature No. corresponds to the number of the ordered, ranked VIP features that were evaluated. Table S3 shows the results for all feature sets.
doi:10.1371/journal.pone.0112445.t003
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Limitations
While the patient population was very well characterized,

represented all severity levels of ASD and the blood samples were

taken in a very systematic fashion, the total number of subjects

(ASD = 52; TD = 30) was not large enough to definitively create a

model for prediction of ASD or characterize metabolic differences

that may be more highly associated with ASD subtypes.

Due to the small sample size, analysis of the data with respect to

medication, sex, special diet, race, ethnicity or other potential

confounding covariates was not conclusive. These are important

considerations which require a larger sample size to address

properly. A much larger study is currently in progress. Random-

ization methods were implemented to help prevent biasing the

results based on any single covariate. The 4 misclassified patients

in the 80 feature SVM model in the validation test set were

Caucasian male and females whereas the Hispanic, Asian, and

other ethnicity were predicted correctly.

Strong evidence of hemolysis, based on visual observation, was

observed in 5 samples from ASD children. These samples were

excluded from analysis Hemolysis can be a result of poor medical

condition, but can also result from suboptimal blood collection

and handling. However, Yin et. al. found that if EDTA tubes were

placed on ice immediately, as was done in this protocol, the

metabolome was very stable. Therefore, it remains possible, but

unlikely, that minor hemolysis may confound the data by effecting

some of the metabolite fold changes that were observed [60].

Conclusions

This initial study provides proof of concept to further pursue

development of metabolic biomarkers of ASD. We have demon-

strated that a profile of altered metabolites in the blood plasma

from a well-curated sample set from clinically diagnosed children

with ASD and TD individuals between 4 and 6 years of age, can

be detected by a combination of several MS-based metabolomic

analyses. Statistical models developed from the derived metabolic

data distinguished children with ASD from TD individuals with

better than 80% accuracy in both the 61-sample training set and

the 21 sample validation set.

The broad metabolite profiling methods developed here can

also be employed to discover a wide variety of additional

metabolites, leading to the determination of biochemical pathways

and mechanisms that are involved in the etiologies of ASD, and

advancing the understanding of autism in broader patient

populations, eventually leading to new modes of therapy. Given

the pronounced clinical and co-morbid features of ASD, it is

possible that metabolic profiling of individual patients may enable

individualized therapeutic approaches for improved outcomes.

Future Endeavors
Further research is currently being carried out in much larger

and younger patient populations to confirm these results, discover

and confirm additional diagnostic metabolites and determine

which are the most robust for evaluating ASD risk. We are also

comparing metabolite profiles in clinically defined subtypes of

ASD to determine whether predictive accuracy can be increased

through better phenotyping of the ASD population. Analysis and

consequential stratification will be performed based on covariables

such as medication, sex, special diet, race, ethnicity, onset and co-

morbid features such as gastrointestinal distress or seizure

disorders may lead to a more accurate set of diagnostic metabolic

profiles.
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